Optical and microstructural properties of ZnO/TiO2 nanolaminates prepared by atomic layer deposition
نویسندگان
چکیده
ZnO/TiO2 nanolaminates were grown on Si (100) and quartz substrates by atomic layer deposition at 200°C using diethylzinc, titanium isopropoxide, and deionized water as precursors. All prepared multilayers are nominally 50 nm thick with a varying number of alternating TiO2 and ZnO layers. Sample thickness and ellipsometric spectra were measured using a spectroscopic ellipsometer, and the parameters determined by computer simulation matched with the experimental results well. The effect of nanolaminate structure on the optical transmittance is investigated using an ultraviolet-visible-near-infrared spectrometer. The data from X-ray diffraction spectra suggest that layer growth appears to be substrate sensitive and film thickness also has an influence on the crystallization of films. High-resolution transmission electron microscopy images show clear lattice spacing of ZnO in nanolaminates, indicating that ZnO layers are polycrystalline with preferred (002) orientation while TiO2 layers are amorphous.
منابع مشابه
Nanolaminate structures fabricated by ALD for reducing propagation losses and enhancing the third-order optical nonlinearities
We demonstrate a novel atomic layer deposition (ALD) process to make high quality nanocrystalline titanium dioxide (TiO2) and zinc oxide (ZnO) with intermediate Al2O3 layers to limit the crystal size. The waveguide losses of TiO2/Al2O3 nanolaminates measured using the prism coupling method for both 633 nm and 1551 nm wavelengths are as low as 0.2 ± 0.1 dB/mm with the smallest crystal size. We a...
متن کاملEffects of Bilayer Thickness on the Morphological, Optical, and Electrical Properties of Al2O3/ZnO Nanolaminates
This report mainly focuses on the investigation of morphological, optical, and electrical properties of Al2O3/ZnO nanolaminates regulated by varying bilayer thicknesses. The growth mechanism of nanolaminates based on atomic layer deposition and Al penetration into ZnO layer are proposed. The surface roughness of Al2O3/ZnO nanolaminates can be controlled due to the smooth effect of interposed Al...
متن کاملStructural, electrical, and optical properties of Ti-doped ZnO films fabricated by atomic layer deposition
High-quality Ti-doped ZnO films were grown on Si, thermally grown SiO2, and quartz substrates by atomic layer deposition (ALD) at 200°C with various Ti doping concentrations. Titanium isopropoxide, diethyl zinc, and deionized water were sources for Ti, Zn, and O, respectively. The Ti doping was then achieved by growing ZnO and TiO2 alternately. A hampered growth mode of ZnO on TiO2 layer was co...
متن کاملEnhanced Physical Properties Of Indium Tin Oxide Films Grown on Zinc Oxide-Coated Substrates
Structural, electrical and optical properties of indium tin oxide or ITO (In2O3:SnO2) thin films on different substrates are investigated. A 100-nm-thick pre-deposited zinc oxide (ZnO) buffer layer is utilized to simultaneously improve the electrical and optical properties of ITO films. High purity ZnO and ITO layers are deposited with a radio frequency sputtering in argon ambient with plasma p...
متن کاملImproved conversion efficiency of Ag2S quantum dot-sensitized solar cells based on TiO2 nanotubes with a ZnO recombination barrier layer
We improve the conversion efficiency of Ag2S quantum dot (QD)-sensitized TiO2 nanotube-array electrodes by chemically depositing ZnO recombination barrier layer on plain TiO2 nanotube-array electrodes. The optical properties, structural properties, compositional analysis, and photoelectrochemistry properties of prepared electrodes have been investigated. It is found that for the prepared electr...
متن کامل